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DESIGN AND LAYOUT OF LAYERED PLATES 

A. G. Kolpakov UDC 639.3 

Calculation of the stiffness characteristics of layered plates is carried out on the 
basis of asymptotic studies for the problem of elasticity theory in thin (thickness h § 0) 
regions [i]. Application to the equations obtained of methods in [2, 3] made it possible 
to solve the problem of designing layered plates with a prescribed set of stiffness charac- 
teristics. 

Characteristic Equations for Layered Plates. An asymptotic analysis was provided in 
[i] for the problem of elasticity theory in a thin region whose thickness h tends toward 
zero, and two methods were proved which may be used in designing layered plates: a limiting 
transition with h + 0 and the same limiting transition invoking a cellular problem (problem 
L in the terms of [i]). In the first case we obtain explicit equations for calculating stiff 
ness and, in the second, the same equations but with prior solution of the cellular problem. 
In this work we follow the second path in studying the mechanics of layered plate bending. 

Let the plate in question be formed of layers of uniform isotropic materials (parallel 
planes Oxlx2). Plate thickness h ~ i. We cover the plate with a rectangular network with 
a side -h long. An element of this network Ph separates a cell Yh = Ph • [-h/2, h/2], called 
the cellular periodicity. In variables Y = 2x/h a cell of periodicity Yh is converted into 

rw I 

Fig. 1 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 152-161, July-August, 1989. Original article submitted February 9, 1988. 

0021-8944/89/3004-0655512.50 �9 1990 Plenum Publishing Corporation 655 



a cell YI = Pi • [-i, i] (Fig. I). We shall assume that Pi = [-i, 
ing characteristic equations were obtained in [i] for thin plates: 

o n  Sa~ o ~w . 
Nij  = ~i~a~Ya~ - -  ija~ Ox~ Ox~ ' 

i] • [-i, I]. The follow- 

(i) 

21 O22 0 2t0 
M i ~  = S~c~?c,~ - -  o,~a~ o ~  Oz ~, a = 1, 2, ( 2 )  

where 

Pi 
(3) 

#, v = i, 2, and function $~9 is determined from the cellular problem (problem L in [i]) 

in cell Yi 

a ~ e v--i~ 

with zero normal stresses at the plate surfaces with Y3 = • a condition of periodicity 
at PI (with respect to variables Yl and Y2), and normalizing <~$v> = 0 (< > signifies average 
for cell YI)" In (i) and (2), {Nij } and {u are forces and strains in the plane of the 
plate (in their classical sense); {Mij} are moments; v are displacements in the plane of 
the plate; w is normal deflection. 

We consider problem (4) for a particular case of ~ = i, k = i. As is easy to see, it 
is a problem of extension (v = i) or bending (v = 2) for a layered body Yx. We shall find 
its solution in the form 

e n  = ~n(Y3), ~ 2  = o22(y3), z u  = 0with i] =/= t l ,  22, e22 = 0 ( 5 )  

[ o i j  = a i j k ~ ( ~ ) e k Z  a r e  s t r e s s e s ,  e i j  = ( 1 / 2 ) ( u i , "  + u ' , i )  a r e  s t r a i n s  c o r r e s p o n d i n g  t o  d i s -  
p l a c e m e n t s  u k a 9  = ~k~v  + e k y a y 3 9 - 1  f r o m  p r o b l e m  ~ 4 ) ] .  j As c a n  b e  s e e n ,  i n  s e e k i n g  a s o l u t i o n  
i n  t h e  f o r m  o f  ( 5 )  c o n d i t i o n s  f o r  n o r m a l  s t r e s s e s  w i t h  Y3 = •  a r e  f u l f i l l e d .  

With v = I, we find the solution of problem (4) in the form 

~(y~) E ( ~ )  v(y~). ( 6 )  ~ = t - ~ (y~)' ~ = ~ _ ~2 (y3) 

o r  

uln=Yl, ulU=o; u~ n = - ~  v(vs) -dy,+const. 

Conditions of periodicity for functions ~m=u ul-elyl 

With ~ = 2 again we find a solution in the form of (5). 

~ ~ (Y3) %2 % ~ (Y3) % 
e n  - -  E (Ya)  E (Yo) ' e22  - -  E (Ya) E (Y3) ' eaa  = - -  - -  

i n  v i e w  o f  w h i c h  o22 = v ( y 3 ) o l l  a n d  

are fulfilled. 

From Hooke's law we have 

?: lYa} 
(7) 

whence (taking account of symmetry of the problem with respect to plane Yl = 0) by integra- 
ting (8) we obtain 

i12 l - , ? ( y 3 )  11--, O~ 

( 9 )  
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In view of el~ = 0 from (9), we find that 

Ou I + a %  a [ ~ - - v  ~ 
oo--7 <m--~ = ~ t---~-- ~'1) (v=) v' -b- 

Equality (i0) is only possible in the case 

whence 

ov (~,) _ O. ( l o )  

(~ {1 --v +" ) au(,~/,) Cg,, (ii O / i s \  E (~11 (,L/S) =-  C : COl]S[ ,  o/]1 - -  

- J (us) c , B .  %, (ga)  = C g s - ' - A ,  U ( g ~ ) = - - v Y ~  i- (12 

After which, from (9) we have 

~ 1 2  ~ I 112 
- -  Cg~',d.a-r- A g l ,  u2 = O, 

U~ 12 
�9 ~ _. v (.%) -= A ) @ a - -  -2 -g  I - I - /3 .  

(13 

So that function g 112 = U112 __ exy~ya [uz~2 gives (13)] is periodic with respect to 

yz and Y2, C = 1 and A = 0 should be placed in (13). Constant B, which may be determined from 
the condition <~2> = 0, does not affect the value of Sijks v, in view of which it is not 
determined. As a result of this we obtain 

~ ( ~ s ) ~ s  ~(~s) ~(~ )~  
- , % ~  - -  ~ ( 1 4 )  

S u b s t i t u t i o n  o f  e x p r e s s i o n s  ( 6 )  and  ( 1 4 )  i n  ( 3 )  l e a d s  t o  e q u a t i o n s  f o r  c a l c u l a t i n g  s t i f f -  
ness  S ~ i i  { i  = l ,  2): 

1 

1 1 

Si~ii dga, S~ii = ,, 

(15) 

Dv ~v 
We calculate SI~2~ = S~2~I. For this it is necessary to know, for example, stresses 

~ corresponding to functions ~iv + e~y~y ~-x (a = I, k = i). These stresses are known 
[see (6) and (14)]. As a result of this, from (6), (14), and (3) we have 

1 

& l ~  = S2~n = 5-  J ~ _ , ?  (va) 
--1 

dya, 

Sx122 = Sl122 = S2:11 = S2:zll = ~ 2 ] 

1 

1 

-~-- ay 3. Sn22 = ~ 2.2n = %" 
--1 

( 1 6 )  

In order to calculate stiffness $1212, a solution of problem (4) should be obtained 
for a function of the form u 12v = ~12v + ely2y3V-1 (k = 2, ~ = i). With this aim it is pos- 
sible to use the solution found above (with k = I, a = I) in a coordinate system turned through 
45 ~ Thus, if function v = u~V--u TM is considered in a coordinate system turned through 
45 ~ then, after returning to the original coordinate system, function v will be the sum of 
the solutions of problem (4): ~i2v + ely2y 3 + ~21v + e2yly s (the sum of the solutions rela- 
ting to k = 2, ~ = 1 and k = I, a= 2). After which it is easy to find stresses oij corre- 
sponding to this function v: 

ale = 021 = E ( Y a ) / ( i  + v(ga)) ,  a l i =  0 withi j  ~ t2,  2i  (~ = 1), 

o12 = ~ 1  : E ( Y a ) Y / ( I  + v(ga)) ,  ~ i j  : 0 w i t h i ]  ~ 12, 2t  (v : 2) 
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and values 

1 

11 h f E (V3) dYa, S1212 = 2" I -~- v (,~'3) 
-1  

1 
12 21 ( h ) 2  f E (Ys) ,~13 

S i n 2  = $1212 = 1 + ~ (v3) 
--1 

1 

dy3, (17) 

S~a~ = 1 + ~ (v3) @3. 
- - 1  

Not shown explicitly Sija8 equal zero (with an accuracy to known symmetries). 
ii 

Note i. Equations (15)-(17) for calculating plate stiffness in tension {Sija~ } and 
bending {S~a8 }~ coincide with equations obtained in [4] for the same characteristics of a 

plate containing a large number of layers (averaged in a classical sense). A model for an 
undeformed normal with a condition of equality to zero of normal stresses in the plate should 
be used in [4]. 

Note 2. With E(y 3) = const, v(y 3) = const classical equations emerge from (15)-(17) 
for the stiffness of uniform plates in tension and bending. 

Design of Layered Plates with a Prescribed Set of Stiffnesses. The following problem 
is posed (design problem): a) by arranging a prescribed set of uniform isotropic materials 
to solve the question of the possibility of creating on the basis of the materials used a 
layered plate with a prescribed set of stiffnesses {S~aB}, b) if the question is solved 
positively, to indicate a method for creating (designing) this plate. 

By returning to Eqs. (15)-(17) it is noted that solution of the design problem formu- 
lated is reduced to solving the equation 

1 

- - 1  

E (Y3) (I)ije~ (v (Y3)) y~+V-2 dy 8 = S~,J ijaf~ (18) 

with respect to functions E(y 3) and v(ys) and number h [functions r are determined 
in (15)-(17)]. Apparently the values listed clearly describe a plate (its thickness and 
structure through the thickness). Problem (18) is incorrect in [5]. 

Cases ~ = const and E 0 ~ E(y) ~ E ~ are of theoretical interest since it is possible 
to obtain analytically the condition for solving problem (18) and based on it to describe 
(analytically) numerous possible stiffness values for layered plates. 

pv 
It is easy to note that with ~(Y3) = const = ~ all {Sija8 } are expressed in terms of 

three functionals: 

1 

~d I,(E)= ] E(v)v V, ~=0,  t, 2. (19) 
- - 1  

Let E(y) e {f e L~([-I, I]):E 0 ~ E(y) ~ E ~ ~ U E is a class of materials used in plate de- 
pv 

sign. It is evident that problem (18) is solvable when, and only when, {Sij~} pertains 
to the image of set U E with a representation, prescribed by the right-hand part of (18), 
for whose computation it is sufficient to know image U E with representation (19). 

We consider the extreme problem 

I j (E)  = A j , ]  = 0 . . . . .  i , i  = t ,  2; 

I~+I(E)-~ r a i n  = m i n ~ + l ( m a x  = m a x , + l ) ;  

(20) 

(21) 

E(y) ~ U E. ( 2 2 )  
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LEMMA i. Functional Ii+~(E) (i = 0, i) in set U E with fulfillment of condition (20) 
takes all of the values from the range [mini+ ~, maxi+~]. 

Proof. Let E~(y), E2(y) ~ U E be solutions of maximization and minimization problems 
(20)-(22) with given i. Since set U E is convex, and functional Ii(E) (19) are linear, then 
function E(y) = ~E~(y) + (i - X)E2(Y) e U E and it satisfies equality (20) with any ~ ~ [0, 
i]. For it we have Ii+~(E) = Xmaxi+~ + (i - X)mini+ ~, whence we obtain what is required. 

LEMMA 2. Functional I0(E) in set U E takes all the values of the range [2E0, 2E~ 

This is evident. 

LEMMA 3. With i = 0 in problem (20)-(22), 

min~ (2E~ -- A~ (2E0 -- A~ (2E~ -- A~ (2E~ -- A~ 
= 2 (E ~ -- Eo) maxl ( 23 ) = _ ) 

P r o o f .  E x p r e s s i o n s  ( 2 0 ) - ( 2 2 )  a r e  a Lyapunov problem [6] as  a r e s u l t  o f  which i t s  s o l u -  
t i o n  ~ y )  ~ U E, i f  i t  e x i s t s ,  s a t i s f i e s  t h e  maximum p r i n c i p l e  [6,  p. 354] h a v i n g ,  in  t h e  
ca se  in  q u e s t i o n ,  a form: f o r  a l m o s t  a l l  y ~ [ -1 ,  l ]  

rain (~oyE(y) -6 g~E(y)) = goy/~(y) -6 Z~E(y). (24) 

A minimum is taken for all E(y) e U E satisfying condition (20) (with i = 0). In view of 
the linearity of (24) with respect to E(y) and ~(y) we find that E(y) for almost all y 
[-I, I] takes two values: either E 0 or E ~ After which finding function E(y) and obtaining 
Eq. (23) is trivial. 

LEMMA 4. With i = 1 in problem (20)-(22), 

rain. 2E~ (2E~ -- A~ 2EO (2E ~ -- Ao)3 
~=--$'- 3(EO_Eo)2' max2= 3 3(EO_Eo)2" (25) 

P r o o f .  In o r d e r  t o  s o l v e  ~ (y )  o f  problem ( 2 0 ) - ( 2 2 )  w i t h  i = 1, t h e  minimum p r i n c i p l e  
[6] takes the form: for almost all y e [-i, I], 

A minimum is taken with respect to E(y) e U g satisfying (20) (with i = i). 
rity for expressions in (26) with respect to E(y) and E(y), we obtain 

(26) 

In view of linea- 

Eo with EoY" -6/~lY -6 k2 ~< O, 
(@ = E~ w ~  ~of" § ~ u  + ~.~ > O. 

(27) 

As a result of the fact that in the right-hand part of (27) there is a quadratic trinomial, 
function ~(y) = E 0 with y e [a, b] = [-i, I] and E(y) = E ~ with y # [a, b] (in the case of 
X 0 > 0). It is easy to prove that in selecting X0 = 1 and 

2 a =  2A1 2E~176 2b 2E~ -- A~ 2A1 
- - 2 E  o -Ao  E o _ E o ,  E o_Eo  2E o_Ao (28)  

conditions (20) with i = 1 are satisfied, and -i ~ a ~ b ~ 1 (for A 0 and A I existing within 
the limits indicated in Lemmas 2 and 3), whence Eq. (25) emerges. 

Lemmas 2-4 give a description of an image of set U E with representation (19), after 
which it is possible to obtain an image of set U E with a representation described by the 
right-hand part of (18). We give this description in mechanical terms. 

Proposition. A. A layered structure plate of thickness h prepared from materials with 
Young's moduli E (~ = const) satisfying the condition E 0 ~ E ~ E ~ i.e., E(y) ~ UE, may ex- 

�9 Ii ~2 22 
hibit a set of stlffnesses $1111 , Sit11 , and Sllll (and it may not exhibit others): 

hEo . ~ 1[ hE~ 
Sin1 ~ _----=-" 

h ~ (2E o -  Ao) (2E ~ -- A.) h 2 (2E o -- Ao) (2E ~  Ao) 
s ( E  ~ G ) ( ~  ~) < s l ~ 1 1 < -  - - 8 (~o _ ~o) (1 - ~ )  
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ha( (2E~ ( 2 E  ~ (2E~ -- A~ ) 
24(1~.v2) 2Eo 3(E o Eo)2 ( t _ v .  o ) 3(EO Eo)2 , (29)  

11 2 )av 
where A 0 = $1111 (i -- v )/h. Nonlinear Si..~o, not shown in (29), are expressed in terms of 

li 12 22 �9 �9 J~) �9 �9 
Silii , Siiii, Siiil according to equations obtained from (15)-(17) with ~ = const. 

B. A plate with any permissible set of stiffnesses Sija~ (29) may be formed of not 
more than five layers using not more than three different materials. 

Proof. Confirmation of A) follows from Lemmas 2-4. In order to prove the assertion 
in B), it is sufficient to use Lemma 1 in view of the fact that functions El(y) and E2(y) 
in this lemma may be taken in the form of (27). 

Discrete Design Problem. The limitations E0 < E < E ~ used above are of interest from a theore- 
tical viewpoint by supplying the possibility of evaluating a set of values of stiffness character- 
istics for layered plates which are "possible in principle." In practice limitations in 
the form E 0 <_ E _< E ~ 'o o _< v <_ 'o ~ (meaning that in preparing plates we arrange materials 
with any, only as necessary, set of material properties (E, v) e [E0, E ~ • [~0, v~ do 
not occur. In fact, in order to create plates materials may be taken from a certain finite 
set. We designate in terms of E a and v a Young's modulus and Poisson's ratio for the a-th 
material of this set, a = i, ..., M, where M is total number of materials which may be used 
for preparing plates. In the case described, functions E(y) and v(y) in (19) take values 
from set {(Ea, va), a = 1 ..... M} (discrete values) and pertain to a class of functions 
U d = { f  e L ~ ( [ - 1 ,  1 ] ) :  f ( t )  �9 {(E a ,  " a ) ,  a = 1 . . . .  , M} V t �9 [ - 1 ,  1 ] } .  

We p r e s e n t  a method  o f  a p p r o x i m a t e  s o l u t i o n  o f  Eq. (19)  in  c l a s s  U d.  We c a r r y  o u t  p a r t i -  
t i o n  o f  t h e  r a n g e  [ - 1 ,  1] [ f o r  which  i n t e g r a t i o n  i s  c a r r i e d  o u t  i n  ( 1 9 ) ]  w i t h  a s t e p  o f  6 > 
0. We o b t a i n  p a r t i t i o n  A n = [ - 1  + 5n, - 1  + 6(n  + 1 ) ) ,  n = 1 . . . . .  [ 2 / 6 ] .  We i n t r o d u c e  t h e  
f u n c t i o n  Y6(Y) = Yn = 6n i n t o  [ - 1  + 6n, - 1  + 6 (n  + 1 ) ) .  We c o n s i d e r ,  t o g e t h e r  w i t h  ( 1 9 ) ,  
t h e  p r o b l e m  

1 

--1 

It is easy to prove that for functions E(y), v(y), 
hand parts of (19) and (30) does not exceed the value 

E~ 
26 max 2' (31) 

~ = I , . , . , M  t - -  ~ 

i.e., the solution of problem (30) gives an approximate solution of (19) [the error in solu- 
tion is estimated by the value of (31)]. 

We designate in terms of Da n a measure of a subset for the range A n in which functions 
E(y) and v(y) take the a-th value E a, ~a" In the notations adopted problem (30) leads to 
the form 

V~ ~ ~ ~ Z v =  
n=l~=i en ' 6| ' (32) 

and {@ijks the difference in the right- 

where vector-columns Z,~, Z, e~, t are 

?i 

bj 

I n  t h i s  way t h e  r e l a t i o n s h i p  e m e r g i n g  f rom d e t e r m i n i n g  {~n a} 

in the i-th place, I = 

R ~ , 

R[2/~]. 
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N 3,1 

E E u,,~ = ~, 1~,~>0, (33) 

and also taking account of 
M 

0~=l 
the second group of equalities in (32) are fulfilled. 

Problem (32), (33) is a problem of finding coefficients {pn ~} for a convex combination 
of points {yn ~} supplying a given point V. A study of this problem was carried out in [3], 
and an algorithm for numerical solution is given in [7]. According to [3], the set of solu- 
tions for problem (32), (33) (if it is not void) may be presented in the form 

~*]= ~P~v;~v, ~%v =1-, s  O" (34) 
Y=I ~---i 

The method for finding values {Pn~ ~} (the so-called simplicial solutions) is given in [7, 8]~ 

Construction of Particular Solutions of the Design Problem. In a number of cases the 
requirement does not arise of obtaining all of the possible solutions for the design problem, 
which occurs in using a small number of materials for creating a plate. Here a method of 
constructing particular solutions of problem (18) given below appears to be useful. 

We shall build an approximate solution of problem (18). We perform discretization for 
the integration range [-I, i] with step 6 > 0 and for range [H l, H 2] (possible plate thick- 
nesses) with step 61 > 0. We introduce a piecewise-constant function y6(y) = Yn = -i + n6 
with y ~ [-i + n6, -I + (n + 1)6), i = 1 ..... [2/6] and a class of piecewise-constant func- 
tions 

V = {  / ~ L~ ( [ -  1' 11> : / (y) = r176 ~ {E=}:~* } 
f o r  y ~ [ - -  I -JI- 1,6, - -  t -[- (/% -{- {) 6) ,  n = 1, . . . ,  [2/6] " 

We consider the equation 

1 
/2Ty V ~ [?j~ (~)]~t+V--2 ]~ (~/) (~D{~,,~ l (~ Q])) d~ ,~V = S~kz, (35) 

--1 

where p, v = i, 2; Hy v = ((Hz + j61)/2)P+v-~; E(y) e V. 

As it is easy to prove, the solution of problem (35) satisfies equality (18) with an 
error not exceeding 

�9 " ~ max E~G----12-.2 & (36) max H2, 8 ' 12 J~=l ..... M\ t - - ~  J 

Equation (35) in the given case is reduced to the following: 

[216] 
6 Z X.j~--X. (37) 

Here 

X . ~ j a  ~ 3 ~ . : H j  ~ v a u  n 3 

X ({Sl111},  {S~1r [S1212])  , ~j,'v = ~_~_, ~_2, 2 0, 

(38) 

and indices ~ e {i ..... M} for terms in sum (37) may be assumed to be any values indepen- 
dently, and index j E {i ..... [(H 2 - HI)/61] } is the same for all terms. As can be seen 
from (37) and (38), presence in sum (37) of the term Xnje means that the n-th layer (layer 

[-i + n6, -i + (n + 1)6]) of the plate is occupied by the ~-th material, and the plate thick- 
ness is H I + j6 I. 
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Problem (37) is incorrect [5]. With the aim of obtaining an approximate solution of 

[2161 

it we shall perform minimization for the modulus of vector .S=X--6 ~Xn~a [5] on the basis 

of the following algorithm: 

I. In the first step a set of vectors {X~ja} c {X~j=}, in sum (37) is prescribed arbi- 

�9 , X 1" --Xnl~) .  trarily (e g.  -3~-- 
k 

2. Let theEe be in the k-th step in sum (37) vectors { Xnja}. We carry out variation 

of the system {Xnie}: we substitute index j by j.,. (which corresponds to a change in plate 

thickness from HI~+ j6~ to H I + j.,.61) and vector .x'kj ~ byX;mj ,~ (which relates to substitu- 

tion of the m-th layer of the ~-th material by the ~,-th). It is easy to calculate that the 
corresponding variation of vector S k will equal 

/ [2/6] \ [~16] 
~S~ = ~ (~=71X~r X ~ j , = , )  q- 6X~j,=, - -  ~ ~=,.E X~j=. ( 39 )  

/Xh+ll I f  I S h - k S S ~ I < I S h l ,  t h e  s y s t e m  o f  v e c t o r s  i s  s u b s t i t u t e d  by r h- X~" } = ~  n~=,. i)*~7 """ ~ m3*~*~ """ 

With fulfillment of condition [S~@6Sh[<IS~[ the variation should be continued�9 

Note 3. Condition [Sh@6Shl<]Shl may appear to be unfilfilled for any variations. 
This agrees with the fact that problem (37) is incorrect and it may not have a solution. 

3. We carry out the actions described in 2) until, or not, we get into the situation 
in Note 3 (no solution) or discrepancy skl becomes less than a prescribed value (a solution 

h of the problem is obtained with a prescribed accuracy and it gives a set of vectors {Xnj=}). 

Example i. Let it be required to obtain a plate design with stiffness characteristics: 
12 

II = 1"109 , the obliquely symmetrical part of stiffness $1111 = stiffness in tension $1111 
21 22 = 0 . 0 6 " 1 0  5 . It is noted that for a uniform plate with $1111 = 0, stiffness in bending Sllll 

stiffness in tension S~11 = i. I0 s' the rest of the characteristics listed above equal 

12 21 22 = 0 . 0 9 3 7 " 1 0  s (V = 1 / 3 ) .  $1111 = $1111 = O, $ 1 t l l  

In order to solve the problem use was made of the algorithm described above for construc- 
ting a partial solution (realized in the form of a computer program in FORTRAN language). 
The plate design will be described by an equation consisting of fragments in the form nI 
(I is material index, n is the number of neighboring layers occupied by the I-th material). 
The following were selected as materials which may be used for preparing plates: Steel (E = 
2"1011Pa, v = 0.3, index St), aluminum (E = 0.7"10 II Pa, v = 0.3, index A), and capron (E = 
0.06"1011Pa, v = 0.4, index C). The condition for plate thickness i ~ h N 0.81"10 -2 m. 

The computer produced a design (5C 18 St IC 4 St 22C 1 St IC 2St IC 19 St 6C) (the plate 
through the thickness was broken down into 80 intervals with a step 6 = h/80). Plate thick- 
ness h = 0.81.10 -2 m. Stiffness characteristics for the design were as follows: 

11 22 S m l  = 1.0052"t0 ~, S]~1 = 0.0003"t07, S m l  = 0.0602"10 s 

(in the calculation the relative error of the solution was 0�9 

Note 4. As can be seen, the design obtained develops a property of rapid oscillation 
of characteristics [in it there is a fragment (I St IC 2 St IC)]. Presence of this property 
is connected with the incorrectness of the problem and it may be analyzed in detail on the 
basis of Eq. (34). We shall not carry out a mathematical study of this question here�9 It 
is only noted that the effect noticed means that a solution for the type of composite ma- 
terial (containing a large number of thin alternating layers) arises in a natural way from 
solving a problem of the type in question. Existence of solutions corresponding to composites 
was noted in [9] in optimum design problems. 

Example 2. Let it be required to obtain with the same materials and with the same limita- 
tions on thickness a design for a plate with stiffness characteristics 

11 12 21 ,~o 
$1111 ~ t "  109,  $1111 ---- $1111 -~ O? "~1111 = 0 .  t 2 - l  0 ~. 
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The computer produced a design (20 St 41C 19 St) (the breakdown step 'was the same as in Example 
i). Plate thickness h = 0.905 m. 

The stiffness characteristics for the design obtained were as follows: 

Sll1111 = ]'0028"]00' S121111 = 0 " 0 0 0 ] ' t 0 1 ,  S ~ l l  = 0"J t8"105  

(relative error of the solution 0.02). 

i. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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HYPERSONIC FLOW OVER BLUNT EDGES AT LOW REYNOLDS NUMBERS 

A. V. Botin, V. N. Gusev, and V. P. Provotorov UDC 533.6.011.8:533.694.71/72 

In a planned descent from orbit a space vehicle is subjected to intense heating due 
to air flow. At the same time, even for relatively low flight heights and low blunting radii 
of individual vehicle elements, and thus low local Reynolds number values, the shock wave 
in those regions can no longer be considered as a discontinuity upon which the Rankin-Hugoniot 
relationships are satisfied, and the effect of viscosity is no longer limited to a thin boun- 
dary layer. At hypersonic velocities, because of the high flow energy, such physicochemical 
processes as heterogeneous chemical reactions, dissociation, and excitation of oscillatory, 
rotational, and translational degrees of molecular freedom may become significant in the 
disturbed region. The initial source of information on this transitional region was experi- 
ment. Subsequently, numerical methods were used successfully for solution of the Boltzmann 
equation for a homogeneous gas, the most widespread being the direct statistical modeling 
or Monte Carlo method. However, upon consideration of physicochemical processes in air such 
studies have as a rule been performed only with the Navier-Stokes equations or models thereof, 
with slippage boundary conditions and a temperature discontinuity. There is no strict justi- 
fication for the applicability of such equations, although many comparisons with experimental 
results and numerical calculations of the Boltzmann kinetic equation for a homogeneous gas 
show that the Navier-Stokes equations can be used successfully for study of hypersonic flows 
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